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ABSTRACT: Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be
ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry
is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the
face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based
on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard
methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic
anthropology.
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The aim of this paper is to apply robust statistical methods to
image analysis of faces with possible applications in forensic
anthropology. We use robust correlation analysis to search for areas
with the highest level of symmetry in a database of images of
faces. This gives the solution to the task of localizing the faces,
which are localized as the areas with the best axial symmetry.
While classical biometrical methods of forensic anthropology and
anthropometrics (1,2) are vulnerable with respect to noise, occlu-
sion, or small violation of symmetry, the robust approach yields
reliable results also for rotated and asymmetric faces. The methods
of statistical learning are used for comparison in both standard and
nonstandard situations. Robust approaches based on robust correla-
tion analysis turn out to be the winner of the comparisons and can
be recommended for forensic anthropology applications.

The first methods of multivariate statistical analysis were devel-
oped at the beginning of the 20th century for anthropological appli-
cations in physical anthropology. The concepts of correlation
analysis, classification analysis, and statistical diversity measures
(distances) were developed by researchers analyzing anthropologi-
cal measurements (F. Galton, K. Pearson, R. A. Fisher, R. C. Rao).
Only later, these statistical methods spread to other branches of
research. These methods need some refinement reflecting the cur-
rent development of statistics, mainly concerning the high vulnera-
bility of the methods to noise (outlying values). Classical
multivariate statistics also assumes the biometric variables to follow
the Gaussian normal distribution (3). In this paper, a new robust
correlation coefficient is described as a new general statistical mea-
sure without special assumptions, and its performance in face local-
ization in images is examined. It is based on down-weighting
individual pixels allowing us to measure the violation of individual

pairs of pixels from the symmetry. The weights are determined
automatically by robust statistical methods.

Identification of groups is the common subject of many papers
in physical anthropology (4). Both face detection and face recogni-
tion can be solved by classification analysis, which is a statistical
method for group identification. Face detection classifies each part
of the image as a face or nonface (area not corresponding to a
face). Face recognition classifies each face to a particular person of
the given database. For both contexts, the usual methods of forensic
anthropology start by a dimension reduction (principal components,
Fourier transform, discrete cosine transform, or wavelet transform)
and feature extraction to describe the differences among images or
their groups and the contribution of variables to these differences
(5). The classification analysis in forensic applications is often car-
ried out by neural networks or support vector machines.

We illustrate the nonimpugnable power of the robust correlation
analysis on the task of localizing the face even without a prelimin-
ary transformation of the images. Avoiding the initial reduction of
dimension and feature extraction enables also a clear interpretation
without assuming a mathematical model, allowing us to explain the
importance of particular parts of the face or individual pixels on
the classification. Usual classification procedures (6) are not capa-
ble enough to extract information from raw images, and this is the
motivation for the common usage of dimension reduction and fea-
ture extraction, which import additional variability to the data or
lose some information. Standard approaches of forensic analysis of
images have their advantages (robustness to illumination, size, or
rotation of the face), but they lack robustness. Moreover, they are
often organized as a complicated cascade of extremely simple clas-
sification methods with numerous parameters (7). Such methods
are, however, tailor-made for particular problems, and their numer-
ous parameters cannot be tuned and are not suitable for a general
usage in anthropology (4). Also, the assumptions of classification
methods may not be fulfilled in practical situations in anthropology,
yielding results opposing the intuition. Therefore, new methods
with a clear interpretation would be desirable.
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Robust statistical methods (8) represent such a new paradigm
applicable to forensic anthropology, allowing us to obtain a robust
solution with respect to noise in the image or occlusion of the face,
resistant to modifications of hair style, not relying on the assump-
tion of normal distribution of the data. While their history goes
back to 1960s (9), only recently they started to penetrate to applica-
tions to different fields including biostatistics (10) and microarray
image analysis for medical applications (11). They have not been
widely applied to image analysis of faces (12). Here, we compare
different robust measures of similarity between two images.

Forensic identification is often based on the face, which is
assumed to be unique allowing us to identify a particular person
(13). In this paper, the search for the best symmetry in the image
is based on the fact that the intra-object variability (violation of
symmetry in the face) is smaller compared to the inter-object vari-
ability (similarity of a face to a nonface or perhaps to the face of
another person). Indeed, the detailed study of the robust correlation
analysis is the key novel approach of this work.

Symmetry is a basic feature of faces that enhances recognition
and reconstruction of faces (14). Nevertheless, fast and effective
symmetry detection is still a difficult problem in computer vision
(15). Symmetry of the face is one of the anthropological features
invariant in time. Also, human brain evaluates symmetry of each
face during the process of face recognition (16) and considers very
symmetric faces to be more aesthetic. Although faces are not
entirely symmetric, their symmetry is assumed, for example, in the
study by Wiskott et al. (17) or W�rtz (18) for the problem of face
detection and recognition. Kalina (19) optimizes templates to locate
landmarks in faces also assuming symmetry of the mouth and eyes
with a very reliable performance of the resulting symmetric tem-
plates. In this paper, we measure the violation of symmetry in each
face, and the method allows us also to interpret which pixels con-
tribute to this violation. Locating the axis of facial symmetry is a
special case of the landmark registration or shift registration applied,
for example, by Ramsay and Silverman (20) in a paleopathological
study of bone shapes. Symmetry is typically analyzed by shape anal-
ysis, which is based on landmarks at edges of the face (14, 21). Our
approach studies the symmetry of gray intensities of the image
rather than the symmetry of the contour of the face.

Forensic sciences work with uncertainty (22) and differences
among individuals. Nevertheless, the symmetry measured by vari-
ous robust correlation coefficients turns to be reliable for face local-
ization for every face. Robust methods are more suitable especially
for asymmetric and occluded faces, for example, a robust correla-
tion coefficient is able to trim away pixels corresponding to asym-
metric hair or occlusion. The robust approach can be applied also
for the analysis of the partially destroyed skull of a decomposed
corpse, where the robust approach can down-weight or ignore the
problematic parts. The robust measure of similarity between two
images can be perceived as an alternative to the Procrustes registra-
tion in the study by Mallett et al. (13).

Other possible applications not considered in this paper include
the identification of a given face by means of the robust correlation
analysis, the analysis of images in personal identity documents, or
forensic stomatology (perhaps in combination with template match-
ing) for the identification of surgical interventions, injuries, or
anomalies in the X-ray image of the skull or teeth. Symmetry can
be also used together with morphological and metric characteristics
in the superprojection of the skull to a 2D image of the face to per-
form the postmortem face recognition. The study of symmetry of
the face in 2D images is an important training problem and prepa-
ration for a 3D study of faces. While the (nonrobust) 3D analysis
of faces is already developed (22), this paper only fills the gap of

robust statistical methods in the study of symmetry in 2D images
of faces.

This paper has the following structure. The next section
describes the methodology used for the search of the vertical sym-
metry in the face, namely standard and robust versions of the corre-
lation coefficient and methods of multivariate statistical analysis.
Further sections present the results and a discussion with
conclusions.

Materials and Methods

We work with a database of images of faces taken at the Insti-
tute of Human Genetics, University of Duisburg-Essen, Germany
(projects BO 1955 ⁄ 2-1 and WU 314 ⁄ 2-1 of the German Research
Council). This database contains 212 gray scale images of the
whole faces of different persons between the ages of 18 and
35 years. The database contains 92 images of men (43%) and 120
women (57%). No two images correspond to the same person. The
persons were selected as a random sample from persons with
German origin.

Each of the original images is a matrix with the same size
192 · 256 pixels. A gray value in the interval [0,1] corresponds to
each pixel, where small values are black and large values are
white. Images are taken under the same conditions, and the Institute
tried to have the images standardized as much as possible. There is
exactly one face of a person looking straight at the camera on
every image. The faces have about the same size and contain no
facial expressions. Some faces are, however, rotated in the plane
by small angles.

The Institute of Human Genetics uses images of faces to carry out
genetic research with the aims to classify automatically genetic syn-
dromes from an image of the face, to examine the connection
between the genetic code and the size and shape of facial features,
and also to visualize a face based only on its biometric measures.
This research starts by a careful manual identification of the land-
marks in faces by an anthropologist trained in this field. Some of the
results of the genetic research are described in Bçhringer et al. (23).

Correlation Analysis

In this work, the search for the face as the most symmetric area
in the image is based on comparing two rectangular parts of the
image. Pearson correlation coefficient is the most commonly used
correlation measure in forensic sciences (24). The study by Pelin
et al. (25) is an example of a study using Pearson correlation
coefficient, which turns out not be statistically significant. In our
study, we have weaker results with Pearson correlation coefficient
as well, but obtain improved results with a robust correlation
coefficient.

Figure 1 illustrates the main idea, where two neighboring rectan-
gles of width 30 pixels are considered and compared. In the whole
image, we take any two neighboring vertical rectangular strips of
the same width (30–70 pixels) and perform the mirror reflection of
one of them. The similarity between the two rectangles is measured
by means of various measures of similarity between two images,
including robust measures. We stress that the rectangles are direct
neighbors without any boundary between them. The face is not
expected at the very right or left boundary of the image. We com-
pare the following correlation measures, which are standard mea-
sures of similarity between two images (6, 21):

• Pearson product–moment correlation coefficient r, which will be
shortly called correlation coefficient;
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• Weighted Pearson product–moment correlation coefficient rW

with weights w; and
• Spearman’s rank correlation coefficient rS.

The coefficient rW is a weighted analogy of r and is equivalent
to the weighted coefficient of determination in linear regression.
Radial weights allow us to stress the face in comparison with other
parts of the rectangles, because they down-weight pixels far from
the midpoint of the middle vertical line, in other words from the
midpoint of the two rectangles taken together as one large area.
For example, there are two neighboring rectangles of size 192 · 30
pixels in Fig. 1, and the virtual midpoint is marked, which serves
as a reference point for the computation of radial weights. The
weight in a particular pixel is defined to be inversely proportional
to its distance from the joint midpoint of the two rectangles.

Robustness of the Correlation Analysis

The vulnerability of classical correlation analysis to outliers is
well known (26). The Pearson product–moment correlation coeffi-
cient r is vulnerable to outlying values in the data (26). Kalina (27)
studies the robustness of rW in the context of template matching and
proves the method based on rW to be robust with respect to small
occlusion, small violations of symmetry, illumination changes, or
rotation by a small angle.

Symmetry and Rotation

The aim is to search for the symmetry in images rotated by a
small degree. Only the kind of rotation in a frontal plane will be
considered, where the whole face is displayed exactly from the
front. We keep the image and rotate the rectangles, which is equiv-
alent to retaining the rectangles vertical and rotating the face. How-
ever, rotating the rectangles moves their corners outside the image,
and the number of such lost pixels depends on the angle of
rotation.

Therefore, instead of the rectangles (Fig. 1), we modify the
approach and consider their intersections with a circle. Only such
pixels belong to the picture for each rotation. Figure 2 shows an
example with modified rectangles of width 60 pixels, where the
black corners are ignored during the computations in this part of

the study. We do not examine rectangles at the right or left edge
of the image.

Robust Correlation Coefficient

We describe several robust versions of a correlation coefficient
with a high resistance against noise or outliers and apply them to
our study. Different proposals of robust correlation measures are
presented by Shevlyakov and Vilchevski (26); these do not, how-
ever, perform well in image analysis (20). Robust versions of the
correlation coefficient are defined based on robust regression esti-
mators, mainly the least weighted squares (LWS) and least trimmed
squares (LTS), which are linear regression estimation procedures
with desirable properties.

The LWS regression (28) is a robust regression method resistant
to a larger portion of noise or outliers in the data. The idea is to
down-weight less reliable observations (possible outliers), while the
most credible and typical data points obtain the largest weights.
The weights are assigned to particular data points automatically
during the computation of the estimator. In our case, the weights
represent an important diagnostic tool explaining the violation of
symmetry in individual pairs of pixels, because smaller weights
correspond to pixels that contribute to the violation of the
symmetry.

To be specific, let us consider the model

Yi ¼ b0 þ b1xi1 þ :::þ bpxip þ ei; i ¼ 1; 2; :::; n

For a particular value of the estimate b of the parameter b, let
us denote the residual of the ith observation by uiðbÞ ¼
Yi � b0 � b1xi1 � :::� bpxip; i ¼ 1; 2; :::; n. Let us denote the ith-
order value among the squared residuals by u2

ðiÞðbÞ. While only the
sizes of the nonnegative nonincreasing weights w1, w2,...,wn are
chosen before the computation, the LWS estimator bLWS minimizes

Xn

i¼1

wiu
2
ðiÞðbÞ

over all possible values of b.
We define the robust correlation coefficient rLWS based on the

LWS as the weighted correlation coefficient rW with the weights

FIG. 1—Localization of the face by searching for the best vertical symme-
try in the image. The similarity between the two rectangles of width 30 pix-
els is compared by different statistical methods. Particularly the radial
weights are connected to the marked joint midpoint of the two rectangles.

FIG. 2—Localization of the face by searching for the best vertical symme-
try in the image. The similarity between the two rectangles of width 60 pix-
els is compared by different statistical methods. Ignoring the black boundary
areas of the rectangles ensures a method robust to rotation of the face.
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determined by the LWS. These properties of the coefficient follow
from the high robustness of the LWS regression (28). For noncon-
taminated data sets, its properties resemble those of Pearson corre-
lation coefficient. For the computation of the LWS-based
correlation coefficient, an approximative algorithm is obtained as
the weighted analogy of Rousseeuw and Van Driessen (29). In our
computations, we use linearly decreasing weights or radial weights.
A two-stage adaptive procedure for the weight selection is proposed
by Rudin and Inman (30).

The LTS estimator (8) is a special case of the LWS estimator
with weights equal to 1 or 0, while the weight 1 is assigned to the
total number of h (n ⁄2 < h < n) data points. This corresponds to
the least squares regression on the h data points ignoring com-
pletely the remaining data. The advantage is the automatic detec-
tion of the points that should be trimmed away. The robust
correlation coefficient rLTS based on the LTS is defined in the
same way as rW with weights that are equal to 1 or 0 only.

For comparison, we also use the M-estimator correlation coeffi-
cient proposed by Shevlyakov and Vilchevski (26); however, M-
estimators are not very robust in the sense of the breakdown point
(8), which is a statistical measure of sensitivity against noise or out-
liers in the data. Robust correlation coefficient is exploited also in
Kalina (11) and can be recommended also to other image analysis
in forensic applications (30). The following robust correlation coef-
ficients are used in our numerical study to locate the facial symme-
try in the images:
• rLWS with weights determined by the LWS regression with line-

arly decreasing weights or radial weights;
• rLTS after removing outliers detected by the LTS regression with

h = 0.95n or h = 0.6n (here n is the number of pixels); and
• M-estimator correlation coefficient based on Huber’s

M-estimator.

Methods of Statistical Learning

We use the following standard classification methods (5) to
localize the face by means of the axis of the best vertical symmetry
in images of faces. They are popular especially in the image analy-
sis of faces. Classification trees have a hierarchical structure com-
paring the variables with a threshold in each step. Support vector
machines maximize the margin between classes. Neural networks
include different methods containing numerous parameters, while
their fitting is a combination of art and science requiring to choose
numerous parameters or to avoid overfitting the data. The linear
discriminant analysis is a standard statistical method discriminating
between two groups of multivariate data assuming multivariate nor-
mal distribution with equal covariance structures; a nice application
to criminology is presented by Ramsay and Silverman (20).
Agglomerative hierarchical clustering classifies multivariate data
into clusters (subsets, groups), starting with individual images as
clusters and merging recursively selected pairs of clusters into a
single cluster.

Results

Correlation Analysis

We apply the methods of the previous section to locate the axis
of the best vertical symmetry in all 212 images of the database.
Table 1 lists the percentages of correctly localized faces by this
method for different widths of the rectangles (70, 60, 50, 40, or 30
pixels each). The width of the head in different images is usually

between 80 and 85 pixels. We consider such results of the classifi-
cation to be correct, when the estimated symmetry line intersects
the nose and separates the nostrils. The results are compared for
the Pearson product–moment correlation coefficient r, its weighted
counterpart rW with radial weights, Spearman’s rank correlation
coefficient rS, and robust correlation coefficients.

The Pearson product–moment correlation coefficient r has the
tendency to find the best symmetry in a homogeneous area in the
right or left part of the image. The most symmetric nonfaces
detected by r in the image are located in the background (80% of
cases), although it is contaminated by severe noise. Only less com-
monly, they contain the shifted face divided in an asymmetric way
to the two rectangles (in 18%) or a shoulder with a smaller part of
the face (2% of cases). Also, the position of the shoulders or possi-
ble asymmetry of hair contributes to incorrect classification results.
The weighted correlation rW with radial weights localizes the face
correctly; also when the head is namely not perfectly straight, the
(often asymmetric) shirt or hair can have a nuisance effect strongly
influencing the correlation coefficient.

Further, we examine the capability of the correlation coefficient
in the task of face recognition, that is, we compare a half of the
face with halves of faces of other persons. We consider rectangles
(Fig. 1) of width 60 pixels. For a particular face, its left half is con-
sidered together with the set of 212 right halves of faces of all per-
sons in the database. It turns out that in 96% of cases, the largest
value of r is obtained for the situation that both halves correspond
to the face of the same person. The weighted correlation coefficient
with radial weights gives 100% performance. This reveals that
although the face is not symmetric, the intra-person variability is
still smaller than the inter-person variability (the resemblance
between two halves of the face is larger than that between one-half
and a half of the face of another person).

Robustness of the Correlation Analysis

An important aspect of methods of image analysis is their
robustness with respect to violations of the standardized conditions.
To examine the local sensitivity of the classical and weighted Pear-
son product–moment correlation coefficient, we consider rectangles
of width 60 and search for the axial symmetry in images with
occlusion, illumination changes, different size, or shifted rectangles.
This study illustrates theoretical finding of Bçhringer et al. (23)
for the context of (weighted) correlation analysis of faces, and the
performance of both r and rW is presented in Table 2.

To study the effect of a small occlusion by occluding every
image in the database, we set the gray intensities in a rectangle of
size 3 · 5 pixels to 1. Every face in the database is modified in

TABLE 1— Percentages of correct results obtained with the correlation
analysis with different standard and robust measures of correlation. Two

neighboring areas are compared, where each of them has a width of 70, 60,
50, 40, or 30 pixels. The weights or parameters of the methods are

summarized in parentheses.

Correlation coefficient 70 60 50 40 30

r 0.98 0.96 0.95 0.91 0.85
rW (radial) 1.00 1.00 0.98 0.98 0.92
rS 1.00 0.99 0.96 0.86 0.72
rLWS (linearly decreasing) 0.99 0.98 0.99 0.94 0.89
rLWS (radial) 0.98 0.98 1.00 0.99 0.95
rLTS (h = 0.95n) 0.98 0.98 0.97 0.95 0.84
rLTS (h = 0.6n) 0.99 1.00 1.00 0.99 0.57
rM (Huber) 0.96 0.96 0.94 0.91 0.86
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this way by placing the occlusion always on the same position to
the bottom right corner of the mouth, below the midpoint of the
mouth by 7 to 9 rows and on the right from the midpoint by 16 to
20 columns.

Further, we examine the effect of moderate illumination changes
or size of the image. First, we add column-dependent noise to
every face in the database so that the left rectangle is retained, and
a constant is added to the gray intensities in the right columns so
that the columns far to the right obtain a larger value. Next, we
also consider radial noise, retaining again the left rectangle and
adding noise to gray intensities with the variability directly propor-
tional to the distance of every pixel from the midpoint of the face.
Another study retains the image and increases or decreases the size
of the rectangles by 10%. All the results are given in Table 2.

Finally, we examine the robustness of the method to a small
shift by 1 pixel. We compute the weighted correlation coefficient
between a particular rectangle with size 192 · 60 pixels and the
same rectangle shifted by 1 pixel aside. Although the gray intensi-
ties in particular pixels may vary greatly, the value of rW over the
whole database lies in the interval [0.936; 0.991]. This is ensured
by a large size of the rectangles, and the method can be declared
robust to a small shift. A shift by half of a pixel yields even a lar-
ger reliability of the correlation. Here, the gray value in a particular
pixel in the shifted image is computed as the mean of four neigh-
boring pixel in the original image. The correlation coefficient
between the rectangle and its shifted counterpart typically exceeds
0.99, which follows from the large size of the rectangles and also
large autocorrelation in the images.

Symmetry and Rotation

Next, we examine the robustness of the method to rotation up to
€10 degrees. The modified rectangles (section Methods) of width
60 pixels (Fig. 2) obtained by intersecting the original rectangles
with the circle ignore 8% of the total number of pixels in the rect-
angles. We use the modified rectangles rotated by three different
angles ()10, 0, and 10 degrees) together with the weighted correla-
tion coefficient with radial weights to locate the best axial symme-
try in the images. We select such of the three possible rotations,
which leads to the largest value of the weighted correlation coeffi-
cient. In all images, the highest level of symmetry turns out to be
present in the face, which is localized correctly as the eyes and
nostrils are correctly separated in 100% of images, even if the larg-
est weighted correlation coefficient is attained for an incorrect rota-
tion of the modified rectangles. Particularly, the largest value of the
three weighted correlation coefficients was attained for the nonro-
tated modified rectangles in 90% of images. In the remaining 10%
of cases, the rotation of the face is mis-specified, often because of
a nonsymmetric position of the shoulders with respect to the face,
but still the face is correctly localized.

Robust Measures of Correlation

The robust correlation coefficients based on the LWS or LTS
regressions are now applied to search for the area with the best
symmetry in the images of the database.

The LWS-based correlation coefficient rLWS with linearly
decreasing or radial weights is computed using the weighted anal-
ogy of the approximative algorithm (29). The result with radial
weights is even more robust than with linearly decreasing weights
(31), because the radial weights assign smaller values to outlying
pixels compared to the linearly decreasing weights. In any case, the
LWS-based method outperforms other correlation coefficients.

The contribution of pairs of pixels to the value of rLWS is influ-
enced by the sizes of the weights. The weights determined by rLWS

for the face in Fig. 1 are shown in Fig. 3. The boundary of the hair
or the collar obtains smaller weights, because the violate the sym-
metry. Therefore, the value of rLWS is not intrigued by this local
asymmetry and gives a more reliable measure of symmetry than
Pearson correlation coefficient.

We compute the LTS-based correlation coefficient rLTS choosing
h = 0.95n or h = 0.6n. The results for the width 50 or 60 pixels
are 100% correct for h = 0.6n. Not only the face itself but also the

FIG. 3—Weights assigned to a particular face by the LWS-based correla-
tion coefficient. Black pixels contribute more to the symmetry and obtain
larger weights. The symmetry is violated in white pixels (hair, collar), which
are down-weighted in the computation of the robust correlation coefficient.

TABLE 2—Performance in face localization for specific situations in
modified images by occlusion, changes in illumination, size of the face, or

shift in the image. The results reveal the robustness of the method to
atypical situations.

Modification of the Standard Images
Results

of r

Results
of rW (Radial

Weights)

Occlusion 1.00 1.00
Illumination (column-dependent noise) 1.00 1.00
Illumination (radial noise) 1.00 1.00
Size 1.00 1.00
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background in a semicircle around the head contributes to the sym-
metry. The outliers are detected in the background that contains
both noise and spatial artifacts. As the images were taken, the light
was coming from the front, so a halo around the head is produced.
The LTS-based correlation coefficient down-weights these impor-
tant pixels and focuses on the very center of the face, while the
whole face should in fact have larger weights. Too narrow rectan-
gles not containing the background next to the head are not capable
to locate the face correctly in some images. A small value of the
trimming constant h does not bring a big difference from the least
squares, while a larger trimming increases the values of the correla-
tion coefficient closer to 1, not only when the rectangles are sym-
metric. Then, the separation of the face from nonfaces is not very
reliable.

Good results of the robust correlation analysis can be explained
by the presence of large homogeneous areas in the image. To quan-
titate this, Moran (32) proposed a 2D autocorrelation coefficient as
a measure of autocorrelation comparing the intensities in particular
pixels with their neighbors. The value of Moran’s (32) coefficient I
lies between 0.96 and 0.98 in every image of our database, which
explains that the intensity in a pixel is very strongly similar to the
intensity in a neighboring pixel. To measure the autocorrelation in
a robust way, we define an analogy of I based on the LWS regres-
sion with linear weights allowing us to down-weight the noise in
the images. This robust measure has the mean value 0.9995 in
every image. The measure shows that violations of the homoge-
neousness of the images truly correspond to boundaries and edges
between almost homogeneous areas.

Methods of Statistical Learning

For the purpose of this section, we selected the training database
of 124 faces and 124 nonfaces and the validation database of 88
faces and 88 nonfaces. We use the classification rules of statistical
learning to learn over the training database, and the performance is
verified on the validation database. The images are used as pairs of
vertical neighboring rectangles 192 · 30 pixels. The nonfaces are
selected as those nonfaces that have the largest symmetry measured
by Pearson correlation coefficient.

The task is to classify each part of the image into two groups
(faces and nonfaces), and for each classification method, we calcu-
late the percentage of correctly classified images (pairs of neighbor-
ing rectangles). We use standard methods of statistical learning
implemented by the R software (or its additional packages), which
is a free software environment popular not only for statistical com-
puting (33) Classification results for various statistical learning
methods are presented in Table 3.

Support vector machines are trained using the function svm in
library e1071. While the performance is 100% correct over the
training database, the algorithm uses 142 support vectors, which
means that the classification rule is based on 142 images. These
are faces similar to nonfaces or nonfaces similar to faces. The
method aims at distinguishing between two variability sources,
namely variability between the two clusters and variability among
images within clusters, and therefore, it requires a large computa-
tional complexity relatively to the size of the database. Only this
high complexity of the classification rule allows us to obtain reli-
able results.

Classification trees in R software package (function tree in
library tree) work only for smaller problems and collapse with our
high-dimensional data. We performed the computation in Matlab
(The MathWorks, Natick, MA). The resulting tree is based on 10
pixels of the total number of 192 · 30 = 5760 pixels. The resulting
tree classifies correctly 98% of images. In the remaining six cases,
the face is classified to be a nonface. The tree considers just gray
intensities in single pixels, studying the difference between two
groups only on a small number of individual pixels. The fitted tree
relies too strongly on specific properties of the training set, and we
find it a controversial classification rule. Moreover, they are rather
unstable to small changes in the data.

Neural networks do not give persuasive results. The multilayer
perceptron and radial basis function networks (library neural) do
not converge to any result. Kohonen self-organizing map (library
kohonen) yields two mixed groups as output, where one contains
95% of all faces and 9% of all nonfaces and the other contains the
remaining 5% of the faces and 91% of all nonfaces. Also perfectly
symmetric faces are classified incorrectly.

We compute the linear discriminant analysis by the function lda
in library MASS. While the sizes of the images are too large to per-
form this classification on original images, we were able to com-
pute robust principal components by the projection pursuit
algorithm (34) and apply the linear discriminant analysis on five
main components.

Agglomerative hierarchical clustering is computed using the
function hclust in library cluster. We use the average linkage
method with the Euclidean distance measure. The method yields
very poor results in classifying our 248 images. One of the result-
ing two clusters contains eight nonfaces, and the other contains 240
remaining images (116 nonfaces and all 124 faces). The explana-
tion is the severe asymmetry of the worst nonfaces, which include
very dark hair or a very dark pullover. This method learns over the
training database without the possibility to be applied to a valida-
tion database.

Discussion

The aim of this paper was the localization of faces in images by
means of localizing the axis of the best vertical symmetry in
images. In this discussion, we also aim at displaying possible areas
of application in forensic anthropology. Using the database of 212
images of faces, two neighboring rectangles in the image are con-
sidered while comparing each pixel from one rectangle with a cor-
responding pixel from the other rectangle. While the Pearson
product–moment correlation coefficient does not yield reliable
results, it is outperformed by its weighted counterpart with radial
weights. Nevertheless, both coefficients are sensitive to outliers,
which have a high influence on the results. We prefer to use the
newly proposed robust correlation coefficient based on the LWS
regression, which yield reliable results over a wide range of
situations.

TABLE 3—Percentages of correct results in classification of faces over
the training and validation databases using standard methods of statistical
learning. Two neighboring areas in the images are compared, where each

of them has the width of 30 pixels.

Methods of Statistical Learning

Results over
the Training

Database

Results over
the Validation

Database

Support vector machines 1.00 1.00
Classification trees 0.98 0.95
Neural networks 0.93 0.89
Linear discriminant analysis
(on robust principal components)

1.00 1.00

Hierarchical cluster analysis 0.53 (not possible)
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The method of this paper can be applied in a combination with
other methods for the tasks of face detection and face recognition.
The robust approach can be applied to robustify existing
approaches, which do not include a procedure for outlier detection.
The most common face analysis methods include feature extraction
or template matching, which need to handle symmetry; detecting
symmetry as one of the features may be a reasonable approach.
Nevertheless, typical solutions for face detection and recognition
are based on a combination of several methods. This removes the
disadvantages of individual approaches, which are manifested in an
insufficient or false detection. Further symmetry detection methods
can also help tracking people in a video sequence.

Robust statistical methods are very suitable for analyzing data in
a robust way, without special assumptions. In our situation, they
are resistant with respect to noise in the image, occlusion in the
face, or to asymmetric hair style. They are able to detect the rather
delicate asymmetric illumination in the background, while standard
methods are masked by outliers and intrigued by the asymmetry in
the background. The hair, shoulders, or collar happens to be asym-
metric in the images and violates the assumption of symmetry of
the image, although the face itself is relatively symmetric. The
robust correlation coefficient assigns smaller weights to these pix-
els. Also, a head possibly rotated with respect to the shoulders does
not disqualify the robust correlation coefficient, which is delicate
enough to down-weight the pixels of the shoulders.

Both rLWS and rLTS outperform r and rW with radial weights.
The LWS method assigns weights to important pixels which con-
tribute to the separation between a face and a nonface. For wider
rectangles, these pixels with larger weights are located in the mid-
dle and at the top of the rectangles to pick up the face and the
homogeneous background, possibly with a circle around the head
caused by the frontal illumination. For narrower rectangles, the lar-
ger weights obtained with the LWS underline the middle part, the
very top and the very bottom. The outliers detected by rLTS typi-
cally appear in the hair or background.

The choice of the width of the rectangles is examined, and width
between 70 and 50 pixels for each rectangle seems to be a reason-
able choice for this particular data analysis task. To summarize the
results, there is no uniformly optimal method for each width of the
rectangles, but rather, different methods can be recommended for
different widths. However, the paper offers more general conclu-
sions regarding the choice of the classification methods and robust-
ness aspects. The LWS-based correlation coefficient is a new
method in this context, and the paper brings arguments in favor of
this robust method and convinces that robust image analysis has a
strong potential to obtain robust results in anthropology.

Standard classification methods are applied on a data set with
212 faces and 212 nonfaces divided into a training set and a vali-
dation set. Some of them ignore the typical appearance of a face,
while other methods fail to be computed for our too large images.
The methods based on machine learning must fail because they
are trying to learn all possible appearances of nonfaces, which is
a too heterogeneous set compared to the set of all faces. Success-
ful results are obtained with the linear discriminant analysis (after
computing the robust principal component analysis) and support
vector machines. The verification is not needed for the correlation
analysis, which does not learn any parameters on the training set.
Moreover, the work with raw images itself uproots the usual prej-
udices about the necessity of reducing the dimension of the
images.

As a future forensic research, we plan to analyze 3D image
information using the superprojection of a skull to a 2D image
allowing the person identification. Such standard search of

connections between landmarks (prominent points) in the skull and
landmarks in the face can be improved by applying robust meth-
ods, while robustness aspects of standard methods should be also
examined. A possible asymmetry is an important feature of a skull,
which determines also an asymmetry of the face. The future work
in forensic anthropology can be inspired by successful results with
the LWS in 2D images in this paper or robust image analysis in
molecular genetic context (11).
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